Nicotinamide glycolates antagonize CXCR2 activity through an intracellular mechanism.
نویسندگان
چکیده
The chemokine receptors CXCR1/2 are involved in a variety of inflammatory diseases, including chronic obstructive pulmonary disease. Several classes of allosteric small-molecule CXCR1/2 antagonists have been developed. The data presented here describe the cellular pharmacology of the acid and ester forms of the nicotinamide glycolate pharmacophore, a potent antagonist of CXCR2 signaling by the chemokines CXCL1 and CXCL8. Ester forms of the nicotinamide glycolate antagonized CXCL1-stimulated chemotaxis (IC(50) = 42 nM) and calcium flux (IC(50) = 48 nM) in human neutrophils, but they were inactive in cell-free assays of (125)I-CXCL8/CXCR2 binding and CXCL1-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) exchange. Acid forms of the nicotinamide glycolate were inactive in whole-cell assays of chemotaxis and calcium flux, but they inhibited (125)I-CXCL8/CXCR2 binding and CXCL1-stimulated [(35)S]GTPgammaS exchange. The (3)H ester was internalized by neutrophils and rapidly converted to the (3)H acid in a concentrative process. The (3)H acid was not internalized by neutrophils but was sufficient alone to inhibit CXCL1-stimulated calcium flux in neutrophils that were permeabilized by electroporation to permit its direct access to the cell interior. Neutrophil efflux of the acid was probenecid-sensitive, consistent with an organic acid transporter. These data support a mechanism wherein the nicotinamide glycolate ester serves as a lipophilic precursor that efficiently translocates into the intracellular neutrophil space to liberate the active acid form of the pharmacophore, which then acts at an intracellular site. Rapid inactivation by plasma esterases precluded use in vivo, but the mechanism elucidated provided insight for new nicotinamide pharmacophore classes with therapeutic potential.
منابع مشابه
Chapter8_6okt_24 pages_FINAL.indd
Binding pocket of small molecular weight antagonists In Chapter 3 [1] we extensively investigated the mechanism of action of antagonists belonging to the diarylurea, thiazolopyrimidine and imidazolylpyrimidine chemical classes. All antagonists antagonize CXCL8 most probably via a non-competitive, allosteric mechanism. Interestingly, using the diarylurea [3H]-SB265610 compound, we discovered tha...
متن کاملGenetic and Pharmacologic Inhibition of the Chemokine Receptor CXCR2 Prevents Experimental Hypertension and Vascular Dysfunction
BACKGROUND The recruitment of leukocytes to the vascular wall is a key step in hypertension development. Chemokine receptor CXCR2 mediates inflammatory cell chemotaxis in several diseases. However, the role of CXCR2 in hypertension development and the underlying mechanisms remain unknown. METHODS Angiotensin II (490 ng·kg-1·min-1) or deoxycorticosterone acetate (DOCA) salt-induced mouse hyper...
متن کاملNonpeptidergic allosteric antagonists differentially bind to the CXCR2 chemokine receptor.
The chemokine receptor CXCR2 is involved in different inflammatory diseases, like chronic obstructive pulmonary disease, psoriasis, rheumatoid arthritis, and ulcerative colitis; therefore, it is considered an attractive drug target. Different classes of small CXCR2 antagonists have been developed. In this study, we selected seven CXCR2 antagonists from the diarylurea, imidazolylpyrimide, and th...
متن کاملIQGAP1 Is a Novel CXCR2-Interacting Protein and Essential Component of the “Chemosynapse”
BACKGROUND Chemotaxis is essential for a number of physiological processes including leukocyte recruitment. Chemokines initiate intracellular signaling pathways necessary for chemotaxis through binding seven transmembrane G protein-couple receptors. Little is known about the proteins that interact with the intracellular domains of chemokine receptors to initiate cellular signaling upon ligand b...
متن کاملDifferential regulation of CXCR2 trafficking by Rab GTPases.
Intracellular trafficking of chemokine receptors plays an important role in fine-tuning the functional responses of neutrophils and lymphocytes in the inflammatory process and HIV infection. Although many chemokine receptors internalize through clathrin-coated pits, regulation of the receptor trafficking is not fully understood. The present study demonstrated that CXCR2 was colocalized with tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 332 1 شماره
صفحات -
تاریخ انتشار 2010